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Introduction
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Presenter: Jian Pei



About JD.COM
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Largest 

retailer in China

301.8 million 

active customers
3rd Largest 

internet company globally

90%

orders fulfilled same-

or next-day

Tencent, Walmart and Google

are strategic partners



Growth and Scale

301.8 million Customers

170,000+ Merchants

Millions of Owned SKUs

99% 

90%

Population coverage

515 Warehouses6.2%

10.8%

12.6%

15.0%

16.1%

6.2%

8.2%

10.2%

12.2%

14.2%

16.2%

18.2%

Online Retail Penetration in 
China

1.2

6.1

10.8

2012A 2017A 2020E

Online Retail Market Size 
in China

Orders delivered in 24 hours
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Growth and Scale
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Year/Country 2012 2013 2014 2015 2016 2017 CAGR

US 225.3 262.3 300.6 343.3 390 440 14.30%

China 70.88 141.6 249.4 369.7 506.3 665.1 56.50%

UK 60.16 68.88 77.84 86.4 94.17 101.7 11.10%

Japan 77.6 70.75 76.85 83.3 89.26 95.08 4.10%

Germany 38.13 42.66 46.69 50.53 54.45 58.38 8.90%

France 30.22 34.21 38.36 42.62 46.41 50.25 10.70%

Canada 18.36 21.61 25.37 29.63 34.04 38.74 16.10%

Australia 18.07 19.16 20.32 21.44 22.6 23.61 5.50%

Russia 12.12 14.65 17.36 19.23 20.57 21.64 12.30%

South Korea 14.4 15.64 16.84 17.67 18.46 19.15 5.90%

Worldwide Retail E-Commerce Sales 2012-2017

(Billion Dollars)
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Retail is Changing
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Customization

Access

Integration

Mobile or PC Any time, any place

Physical products 
Product and services 

catered to specific needs

FutureNow

Products Customers Products Customers

Products

Customers

Facilities

Retail-as-a-Service



Challenges in Retail

Competition for customers’ time “Open-shelf” stores versus 

scenario / theme-based stores

Innovations in marketing: 

search/recommendation model

versus social content based marketing

Creating retail scenarios

9



A View of the Future



E-Commerce Solutions: Boundaryless Retail
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Understand customer 
needs with big data 

analytics

Connect customers 
directly to products and 

services seamlessly

Serve customer 
requirements with a 
shorter and more 

efficient supply chain

Shop any time, any 
place 

Order products &
services

Customize design, 
manufacturing, 

fulfillment, and marketing 
with user input



Data-Driven Boundaryless Retail

Understand Customers Connect To Customers Serve Customers

Data

Algorithm

Technology

Application

IoT Automations/Robotics Block Chain Cloud Computing

Customers Products Suppliers Suppliers Metadata Feedback Competitor

Operation Research, 

Optimization, Probability 

Statistics , Machine

Learning, Deep Learning

Simulation, A/B Testing 

Platform

12



Retail-as-a-Service

• Retail-as-a-Service

• New opportunities and challenges for modeling/algorithm design and data analytics

Understand
Customers

• Demand
forecasting

• Customer behavior 
analysis

• Detect customer 
needs

Connect To
Customers

• Product 
recommendation

• Personalized 
coupon via all 
channels

• Real-time on-
demand services

Serve Customers

• Supply chain 
management

• Fulfillment/Delivery 
network

• Warehouse/store 
operations

13

Explain state-of-the-art practice Discuss future developmentReview historical path



Understand Customers

Presenter: Rong Yuan
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Understand Customers with Big Data

Data
Offline 

shopping
Online 

transactions
Click-

Stream
Webpage 
browsing

Social 
media

App 
usage

Customer 
feedback

Big Data 

Analysis

Focus of this tutorial

Application Demand Forecasting Behavior Description Intention Detection

15



• Customer demand on a product forms a time series

Time Series Forecasting

Deep LearningMachine LearningStochastic Time Series Models

 MLP (<1965)

 RNN (1980s)

 LSTM (1997)

 Seq2seq (2014)

 Linear Models:

 ARIMA: Box-Jenkins 

methodology (1970)

 AR,MA,ARMA,SARMA

 VAR

 Non-linear Models:

 ARCH (1982)

 GARCH (1986)

 Linear Regression

 Support Vector Regression (1996)

 Gaussian Process

 Tree-based Models

 Regression Tress (1984)

 Random Forest (1995)

 Gradient Boosting

 AdaBoost (1997)

 XGBoost (2014)

 LightGBM (2017)

 CatBoost (2017)

Model-Driven Data-Driven Big Data Enrichment

16



Forecasting Metrics

Other common measure -- Root Mean Squared Error (RMSE), Mean Forecast Error (MFE), Mean Percentage Error (MPE), Sum 

of Squared Error (SSE), Signed Mean Squared Error (SMSE), Normalized Mean Squared Error (NMSE),  Mean Absolute Scaled 

Error (MASE), Overall Weighted Average (OWA)

MFE (Mean Forecast Error)

Metric Formula Strengths

MAD (mean absolute deviation)
1

𝑁
 

𝑖

 𝑌𝑖 − 𝑌𝑖 Most intuitive

MAPE (mean absolute percentage 

error)

1

𝑁
 

𝑖

𝑌𝑖 −  𝑌𝑖

𝑌𝑖

Independent of the scale of 

measurement

SMAPE (symmetric mean absolute 

percentage error)

1

𝑁
 

𝑖

2 𝑌𝑖 −  𝑌𝑖

𝑌𝑖 +  𝑌𝑖
Avoid asymmetry of MAPE

MSE (mean squared error)
1

𝑁
 

𝑖

𝑌𝑖 −  𝑌𝑖
2

Panelize extreme errors

Quantile Loss
1

𝑁
 

𝑖

𝑞(𝑌𝑖 −  𝑌𝑖)
++(1 − 𝑞)(  𝑌𝑖 − 𝑌𝑖)

+
Measure distribution

17



Variable Customers Requirement

• Retailing is about getting the right products to the right people in the right 
place at the right time.

• Customers requirement vary by

Location

(e.g. stationery sales

near a school)

Special Event

(e.g. toy sales after 

movie is released)

Time

(e.g. ice-cream sales 

on sunny days)

Personal Preference

(e.g. different fashion 

styles)

18



Demand Forecasting in E-Commerce

Highly variable 
customers needs

Stock inventory 
to provide buffer 
against demand 

variability

Millions of 
products (not to 

mention product-
region pairs)

Supply chain 
issue like vendor 

lead time

19



Implications to Modelling

Highly variable 
customers needs

Highly non-
stationary demand 

time series
Stock inventory

Probabilistic 
forecast

Millions of 
products

Multiple time 
series

Vendor lead time
Multi-horizon 

forecast

20



Forecasting Methods to be Covered

• Stochastic time-series models
• ARIMA

• Machine learning
• Tree-based

• Deep learning
• Seq2Seq

Scorecard

Highly non-stationary -

Multiple time series -

Multi-horizon forecast -

Probabilistic forecast -

21



ARIMA

• Auto-Regressive Integrated Moving Average

• George Box and Gwilym Jenkins developed in 1970s

• ARIMA(p,d,q) 

• ARMA models can only be used for stationary time series

• Use finite differencing to ‘stationarize’ time series

𝑦𝑡′ = 𝑦𝑡 − 𝑦𝑡−𝑑

𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞

AR(p) terms regress 

against past values

MA(q) terms regress 

against past errors

𝑦𝑡
′ = 𝛿 + 𝜙1𝑦𝑡−1

′ + 𝜙2𝑦𝑡−2
′ + ⋯ + 𝜙𝑝𝑦𝑡−𝑝

′ + 𝜃1𝑒𝑡−1
′ + 𝜃2𝑒𝑡−2

′ + ⋯ + 𝜃𝑞𝑒𝑡−𝑞
′

Level of differencing

22



ARIMA Example – Airline Passenger Dataset

Original Time Series

Take 𝑙𝑜𝑔(𝑦) to remove 

non-constant variance

Differencing to remove trend

Level of differencing = 1
Stationary time series with 

seasonality

Time series with trend, 

seasonality, and non-

constant variance

Time series with trend 

and seasonality

𝑦𝑡′ = 𝑦𝑡 − 𝑦𝑡−1

23



ARIMA Example – Fit Model

• Study autocorrelation and partial autocorrelation (ACF/PACF) 
charts to determine

• Seasonal pattern: observe strong correlation between 𝑦𝑡
′ and y𝑡−12

′

• AR parameters: no strong correlation between 𝑦𝑡
′ and other 𝑦′s

• MA parameters: error terms at 𝑡 − 1 and 𝑡 − 12 are useful

• ARIMA(0,1,1)x(0,1,1)12

• Automated in R/Python

Expanded formula 

𝑦𝑡 = 𝑦𝑡−12 + 𝑦𝑡−1 − 𝑦𝑡−13 − 𝜃1𝑒𝑡−1 − 𝜃12𝑒𝑡−12 + 𝜃13𝑒𝑡−13

24



Limitations of ARIMA

• ARIMA assumes the underlying time series is linear

• Difficult to fit highly non-stationary time series

• Cannot deal with multiple time series at the same time 

• What does demand look like in real business?

Scorecard

Highly non-stationary Limited

Multiple time series Limited

Multi-horizon forecast Yes

Probabilistic forecast Yes

25



Machine Learning Model

• Flexible in having more features (𝑋) in the model

• No assumption w.r.t the demand distribution

• One model for all time series

• Feature engineering is important

X

Features

Independent variables

Explanatory variables

Dependent 

variables

Machine Learning

Models
Y

26



Feature Engineering

Time series

Category,

subcategory, brand, 

color, shape, size
Day of the 

week, lunar 

week, hour of 

the day

3-digit zip code
Local 

festival
Promotional 

events

SKU Attributes LocationTime
Sales Data

Human Expert EmbeddingOne Hot Encoding Feature Hashing

Features

Example features

Mean of the past 7-day sales

Variance of the past 7-day sales

Max sales of the past 14 days

Sales of the 7th day in the past

90% sales quantile of last month

Example features

Festival encoding ([0,0,0,1,0,0])

Percentage of discount

Promotional type (hash id)

Category (hash id)

SKU Name (embedding vector)

27



Popular Machine Learning Models

Linear Regression 
(ARIMA + X)

• Estimate independent 
variable as a linear 
expression of the 
dependent variables 

Tree-based models

• Use decision trees to 
classify the dependent 
variables in order to 
make prediction 

Support Vector 
Regression

• A hyperplane is 
selected to separate 
the dependent 
variables

• Use a subset of the 
training data to draw a 
margin of tolerance 
around the hyperplane

• Use kernel function to 
model nonlinear 
relationships 

Gaussian Processes 

• Assume the 
covariance between 
dependent variables is 
multivariant Gaussian

• Use kernel function to 
explore the 
relationship between 
the variables close to 
each other

28



Popular Machine Learning Models

Linear Regression 
(ARIMA + X)

• Estimate independent 
variable as a linear 
expression of the 
dependent variables 

Tree-based models

• Use decision trees to 
classify the dependent 
variables in order to 
make prediction 

Support Vector 
Regression

• A hyperplane is 
selected to separate 
the dependent 
variables

• Use a subset of the 
training data to draw a 
margin of tolerance 
around the hyperplane

• Use kernel function to 
model nonlinear 
relationships 

Gaussian Processes 

• Assume the 
covariance between 
dependent variables is 
multivariant Gaussian

• Use kernel function to 
explore the 
relationship between 
the variables close to 
each other
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Tree-Based Models

• Regression tree

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

Y

X

x<10

X<5

2.8

X<15

X<20

13

5.4

17.2

9.6

NY N

N

Y

Y

NY

• Top-down approach – choose a variable at each step to best split the sample set;

30



Tree-Based Models

• Random Forest
• Bagging

• Independent classifiers

• Random resample with replacement

• Random feature selection at split

• Gradient Boosting
• Boosting

• Sequential classifiers

• Resample with weights

Parallel Training

Sequential Training
31



Limitations of Machine Learning

• Incorporating features requires manual work
• Requires human expertise

• Some features are difficult to capture

• Time consuming

Scorecard

Highly non-stationary Yes

Multiple time series Yes

Multi-horizon forecast Yes

Probabilistic forecast Yes

32



Deep Learning Mini-Lecture

• Goal
• Quick review of the deep learning techniques that empowers powerful 

applications in time series forecasting

• Content
• Neuron

• Multi-layer perceptron

• RNN

• LSTM

• Seq2Seq

33



Neuron

Input vector:

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)

Neuron 𝑗
Weight vector: 𝑊𝑗

Bias: 𝑏𝑗

Activation function: 𝑓

Output: 

𝑌𝑗 = 𝑓(𝑊𝑗
𝑇𝑥 + 𝑏𝑗)

𝑥1

𝑥2

𝑥3

𝑥4

𝑥𝑛

.

.

.

Neuron 𝑗

𝑊1𝑗

𝑊2𝑗

𝑊3𝑗

𝑊4𝑗

𝑊𝑛𝑗

Inputs Weights

Activation 

Function

𝑌𝑗

Output

∫

34



Type of Activation Functions

Tanh: ℝ → (−1,1)

𝑡𝑎𝑛ℎ x =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Sigmoid: ℝ → (0,1)

𝜎 𝑥 =
1

1 + 𝑒−𝑥

ReLU: ℝ → [0, ∞)
𝑅𝑒𝐿𝑈 𝑥 = max 0, 𝑥

𝑥1

𝑥2

𝑥3

𝑥4

𝑥𝑛

.

.

.

Neuron 𝑗

𝑊2𝑗

𝑊3𝑗

𝑊4𝑗

𝑊𝑛𝑗 Activation 

Function

𝑌𝑗

𝑊1𝑗

∫
Predict  probability; 

model multi-class 

classification

Maintain negativity; 

model two-class 

classification

Only keep positive 

values; 

gradient is constantly; 

more computationally 

efficient
35



Single Layer

𝑥1

𝑥2

𝑥3

𝑥4

𝑥𝑛

.

.

.

Neuron 2

Inputs Layer

𝑌2 = 𝑓(𝑊2
𝑇𝑥 + 𝑏2)

Neuron 1

Neuron 3

𝑌1 = 𝑓(𝑊1
𝑇𝑥 + 𝑏1)

𝑌3 = 𝑓(𝑊3
𝑇𝑥 + 𝑏3)

Outputs

𝑌 = 𝑓(𝑊𝑇𝑥 + 𝑏)

Matrix Notation

∫

∫

∫
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Multi-Layer Perceptron (MLP)

𝑥1

𝑥2

𝑥3

𝑥4

𝑥𝑛

.

.

.

Neuron

Input Layer Hidden 

Layer 1

𝑊 1 , 𝑏 1 , 𝑓(1)

Neuron

Neuron

Neuron

Hidden 

Layer 2

𝑊 2 , 𝑏 2 , 𝑓(2)

Neuron

Neuron

Output 

Layer

𝑊 3 , 𝑏 3 , 𝑓(3)

𝑌(1)

𝑌(2)

𝑌(3)

𝑌(𝑖+1) = 𝑓(𝑊 𝑖 𝑇𝑌 𝑖 + 𝑏(𝑖))
Depth = 4 layers

Supervised learning on output

∫

∫

∫

∫

∫

∫
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Recurrent Neural Network (RNN)

• Pass on information through feedback loop

• Parameter sharing across time indices

RNN RNN Unfolded

Picture credits to colah.github.io 38



Long Short Term Memory (LSTM)

• Long term memory via cell state

• Cell state updates regulated by gates

• Applications : speech recognition, language modeling, translation, image captioning

Picture credits to colah.github.io 39



Long Short Term Memory (LSTM)

Forget gate: when we see 

new input 𝑥𝑡, we want to 

forget “memorized” info in 

cell state C.

Input gate: add new info 

to the cell state C.

Combine ‘forget’ and 

‘update’ info to the 

cell state C

Output gate: decide what 

we are going to output. 

Output will be based on 

current cell state C,  and 

direct input 𝑥𝑡 .

Picture credits to colah.github.io 40



Seq2Seq Model for Time Series

Related literature on e-commerce demand forecast with Seq2Seq model: DeepAR (Flunkert et al., 2017), MQ-RNN (Wen et al., 2017)

LSTM1 LSTM1 LSTM1…

𝑦1 𝑦2 𝑦𝐿

LSTM2 LSTM2 LSTM2…

Encoder

Decoder

Input Sequence Length

𝑦𝐿+1
′ 𝑦𝐿+2

′ 𝑦𝐿+𝑄
′

Pass Hidden State

41



Methods Comparison

Stochastic Time Series Machine Learning Deep Learning

Highly non-stationary Limited Yes Yes 

Multiple time series Limited Yes Yes

Multi-horizon forecast Yes Yes Yes

Probabilistic forecast Yes Yes Yes

• Stochastic time-series models
• Good model interpretability

• Limited model complexity to handle non-linearity

• Difficult to incorporate cross features among multiple time series

• Machine learning
• Flexible and can incorporate any feature explicitly

• Heavy workload in terms of feature engineering

• Deep learning
• Very flexible and automated feature detection

• Poor model interpretability

42



• Data

• Problem definition

• Model/Methodology

• Some highlights

• Numerical results

JD Practice

43



JD Practice : Data

Historical Sales 

Table

item_sku_id

dc_id

date

quantity

vendibility

Promotional Events 

Table

item_sku_id

date

promotion_type

SKU Attributes 

Table

item_sku_id

item_first_cate

item_second_cate

item_third_cate

brand_code

attr_cd

attr_value_cd

Example data (1000 SKUs over 2 years) available on JD Global Optimization Challenge (GOC)

Attribute COLOR can 

have multiple values 

such as RED, GREEN, 

BLUE, etc.

Vendibility measures if 

on-hand inventory is 

positive at the end of 

the day

Promotion type can be 

direct sales, group rate 

discount, gift, etc.

44



JD Practice: Probabilistic + Multi-Horizon Forecast Output

1-day 2-day 3-day … 31-day

80% - - - - -

81% - - - - -

82% - - - - -

… - - - - -

97% - - - - -

98% - - - - -

99% - - - - -

Predict this table for each SKU every day

45



• Data Collection

• Exploratory Data 
Analysis

Data Analysis

• Data 
Transformation

• Filling Missing 
Data

Data 
Preprocessing • Features 

Identification

• Embedding on 
Categorical Data

Feature 
Engineering

• Sample Selection

• Augmentation

• Cross Validation

Training 
Mechanism • Parameter Tuning

• Adjustment for 
Overfitting

• Model Selection

Model 
Evaluation

JD Practice: Model Framework

Gradient Boosting Machine Learning

Seq2Seq Deeping Learning
Model

46



Data 
processing 
and feature 
engineering

Gradient Boosting

• LightGBM

• Sequential classifier

• Parameter tuning for better accuracy

• Number of leaves

• Num_iterations

• Learning rate

• Regularization/over-fitting

• Lambda_l1/Lambda_l2

• Max depth

• Min_data_in_leaves

Prediction

JD Practice : Gradient Boosting Machine Learning Model

…

47



JD Practice : Seq2Seq Deep Learning Model

LSTM Encoder for Historical Sales Decoder - global MLP applied at every local sliding 

window, capturing both global and local information.

ℎ𝑡−2 ℎ𝑡−1 ℎ𝑡

𝑥𝑡−2

𝑦𝑡−2

𝑥𝑡−1

𝑦𝑡−1

𝑥𝑡

𝑦𝑡

ℎ𝑡+1 ℎ𝑡+2 ℎ𝑡+3

𝑥𝑡+1 𝑥𝑡+2 𝑥𝑡+3

ℎ𝑡+𝑁…

𝑥𝑡+𝑁

𝑧𝑡+1 𝑧𝑡+2 𝑧𝑡+3

ℎ𝑡+4

𝑥𝑡+4

𝑦𝑡+1 𝑦𝑡+2 𝑦𝑡+3

…

…

𝑧𝑡+𝑁…

𝑦𝑡+𝑁…

Hidden 

states

Hidden 

states

Intermediate result 

to capture daily 

information  

Multi-Horizon 

quantile

prediction

48



JD Practice : Exploratory Data Analysis

Data Analysis
Data 

Preprocessing
Feature 

Engineering
Training 

Mechanism
Model 

Evaluation

Censored Demand Observation

Percentage of time SKUs are out of stock

Both Seasonality and correlation in sales data

49



• Matrix Factorization

• Improve forecast accuracy by 5~15%

JD Practice : Filling Missing Data

Data Analysis
Data 

Preprocessing
Feature 

Engineering
Training 

Mechanism
Model 

Evaluation

50



JD Practice : Embedding 

Data Analysis
Data 

Preprocessing
Feature 

Engineering
Training 

Mechanism
Model 

Evaluation

𝑣1001

𝑣1002

𝑣1003

𝑣1004

𝑣1005

…

𝑣1999

Category Embedding Vectors

𝑣1004Other features

LSTM Cell

51



JD Practice : Sample Selection

Data Analysis
Data 

Preprocessing
Feature 

Engineering
Training 

Mechanism
Model 

Evaluation

2018.12017.12016.12 2017.12

𝑌𝑡𝑟𝑎𝑖𝑛𝑋𝑡𝑟𝑎𝑖𝑛 𝑌𝑡𝑒𝑠𝑡𝑋𝑡𝑒𝑠𝑡

In order to capture yearly seasonality…

In order to capture influence from near past…

Data Augmentation

2018.12017.122017.11 2017.12

𝑌𝑡𝑟𝑎𝑖𝑛𝑋𝑡𝑟𝑎𝑖𝑛 𝑌𝑡𝑒𝑠𝑡𝑋𝑡𝑒𝑠𝑡

𝑌𝑡𝑟𝑎𝑖𝑛𝑋𝑡𝑟𝑎𝑖𝑛

𝑌𝑡𝑟𝑎𝑖𝑛𝑋𝑡𝑟𝑎𝑖𝑛

52



JD Practice : Numerical Result

0
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95% quantile with metric  𝑖 𝑞(𝑌𝑖 −  𝑌𝑖)
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+
95% quantile with metric 
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++ 1−𝑞  𝑌𝑖−𝑌𝑖

+

𝑌𝑖

• Comparable results between ML and DL on 20000 products with historical sales over 2 years

• DL is in general better at handling sales peaks
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Summary

Deep LearningMachine LearningStochastic Time Series Models

Computational 

Efficiency

Model 

Interpretability

Model 

Capability
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Connect To Customers

• Connecting products to customers seamlessly in all scenarios.

• People are different in many ways

ActivitiesBackground Social ConnectionsLocations
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Connect To Customers

• Connecting products to customers seamlessly in all scenarios.

• Products are different in many ways

ContentPhysical Products ServiceDigital Goods
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Connect To Customers

Search RecommendationBrowsing

Advertising Social Network C2M
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• Delivering the right products to the right customers at the right place and 
right time



Product Recommendation in E-Commerce

• With an ever increasing number of products 
available to customers,  delivering the most 
appropriate products to customers has become 
a core functionality of retail platforms.

• Naturally, product recommendation has now 
become a centerpiece of 
e-commerce platforms.

Hundreds 
of millions

Billion

Multi-
billion

Ten billion 
+

2014 Dec 2015 Dec 2016 Dec 2017 Dec

JD.com # of SKUs (million)
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Product Recommendation in E-Commerce

• 35% of goods purchased on Amazon and 75% of content watched on 
Netflix come about as a result of product recommendations.

(www.intelliverse.com/blog)
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Product Recommendation Example
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Uniqueness of Product Recommendation

• Other common recommendation systems
• Video and music: Netflix, Pandora, Tik Tok (Douyin), etc.
• News and information: Google News, Facebook, Toutiao, etc.

• Key differences between common recommendation and product recommendation
in e-commerce.

• Different objectives
• Strong preference to business metrics such as revenue or profit, vs. indirect

measurement such as browsing time, click count, etc.
• Need to balance multiple objectives (GMV, order value, conversion, ads revenue, 

etc.)
• Varying customer intentions

• Shopping customers have stronger and changing short-term intention vs. common
recommendations’ main objective is to capture customers’ long-term preference.

• Complicated product relationships
• Complementarity and substitutability of products can be hard to estimate, while

document/video similarity is relatively well-defined.
• Different repurchase behaviors
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Recommendation System Framework

User Data

Product 

Data

Real-Time 

Data

Candidate 

Retrieval

Business 

Rules

Recommendation 

Algorithm

Manual 

Overwrite

User 

Application

A/B 

Testing

Algorithm 

Evaluation
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Inputs

User Data

User Identifier

Demographic Information

Shopping Habit

Shopping History

Browse History

Favorite/Disliked Items

Devices

…

Product Data

Category

Brand/Manufacture

Origin

Rating

Product Price

Product Description

Product Images

…

Real-Time Data

Location

Time

Device

Session Information

Product Searches

Product Impressions

Product Browses

…

Describe users, their 

preferences, their 

histories, etc.

Describe the all things 

related to the products 

and all product-related 

user interactions.

Describe the shopping 

scenario and users’ 

interaction with the 

shopping scenario
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Evaluation Metrics

Objective Metrics

Click-Through Rate 𝐶𝑇𝑅 =
𝑐𝑙𝑖𝑐𝑘𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

Conversion Rate 𝐶𝑉𝑅 =
𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

Precision 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

Recall 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠

F-Score
𝐹 =

2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Area under the ROC Curve (AUROC)

Average Precision 𝐴𝑣𝑒𝑃 =
 𝑘=1

𝑛 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑘 ⋅ 𝑟𝑒𝑙 𝑘

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠

Half Life Utility 𝑅𝑎 =  

𝑘

𝑢 𝑎, 𝑗

2
𝑖𝑑𝑥 𝑘 −1

𝛼−1

, 𝑅 =
𝑅𝑎

𝑅𝑚𝑎𝑥

Discounted Cumulative 

Gain (DCG)
𝐷𝐶𝐺𝑝 =  

𝑖=1

𝑝
𝑢(𝑖)

log2(𝑖 + 1)

Normalized Discounted 

Cumulative Gain (nDCG)
n𝐷𝐶𝐺𝑝 =

𝐷𝐶𝐺𝑝

𝐼𝐷𝐶𝐺𝑝
=

 𝑖=1
𝑝 𝑢(𝑖)

log2(𝑖 + 1)

 𝑖=1
𝑅𝐸𝐿 𝑢(𝑖)

log2(𝑖 + 1)

True North Metrics

Total Order Numbers

Total Visit Duration

Gross Merchandise Value (GMV)

Total Gross Profit

Total Net Profit
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Types of Product Recommendation Algorithms

• Content Based Methods (Ricci et al., 2015; Pazzani and Billsus, 2007)

• Recommends items similar to those liked/purchased by the customer in the past

• Use attributes of items/customers

• Collaborative Filtering Based Methods (Goldberg et al., 1992; Linden et al., 2003; 
Schafer et al., 2007)

• Recommends items liked or purchased by similar customers

• Enable exploration of diverse content

• Hybrid Methods (Burke, 2002; Zhang, et al., 2017)

• A combination of both methods

• Deep Learning techniques have been proven to be effective

• Recommends items by embedding features in different levels

• Enable exploration of context, time and sequence
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Content Based Recommendation

• Based on similarity of item attributes
• Item name, categorical information, price, description, technical specs, etc.

• Challenges: 
• Vague definition of similarity

• Cannot provide diverse content

(https://d4datascience.wordpress.com/2016/07/22/recommender-systems-101/) 68



Collaborative Filtering

• Collaborative Filtering is the process of filtering or evaluating items using 
the opinions of other people. 

(https://d4datascience.wordpress.com/2016/07/22/recommender-systems-101/)
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Collaborative Filtering

• User-User Collaborative Filtering

• Item-Item Collaborative Filtering

(https://d4datascience.wordpress.com/2016/07/22/recommender-systems-101/)
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Collaborative Filtering

• Association Rule Mining Algorithm
• Agrawal, et al., 1993; Mobasher, et al., 2001; Lin, et al., 2002

• Probabilistic (model-based) Algorithm
• Breese, et al., 1998; Rendle, et al., 2009

• Nearest-Neighbor (memory-based) Algorithm
• Sarwar, et al., 2001; Deshpande and Karypis, 2004

• Dimensionality Reduction (matrix factorization) Algorithm
• Koren, et al., 2009; Sarwar, et al., 2000; Paterek, 2007
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Matrix Factorization Based Recommender

• Populated by the winning algorithms of Netflix Prize (Koren et al., 2009)

𝑟𝑢𝑖~  𝑟𝑢𝑖 = 𝑞𝑖
𝑇 ⋅ 𝑝𝑢

min
𝑞,𝑝

 

𝑢,𝑖

𝑟𝑢𝑖 − 𝑞𝑖
𝑇 ⋅ 𝑝𝑢

2
+ 𝜆 ⋅ 𝑞𝑖

2 + 𝑝𝑢
2

≈

×

Users

Products

R
P Q
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Collaborative Filtering Based Recommendation

 Collaborative Filtering

(CF, Schafer et al, AdaptiveWeb’07)

 Matrix Factorization

(MF, Koren et al, Computer’09)

 SVD++ model 

(Koren et al, KDD’08)

 Behavior Factorization 

(Zhao et al, WWW’17)

 TimeSVD++ model (Koren et al, KDD’09)

 Personalized Recommendation

(STAR, Song et al, CIKM’15)

 Factorizing Personalized Markov Chain 

(FPMC, Rendle et al, WWW’10)

Time-AwareContext-Aware Sequence-AwareCF-Based Methods

• Challenges:
• Cold-start problem

• Inflexibility in adding new features

• Time consuming calculation

• Hard to scale
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Hybrid Recommendation System

• Content based recommendation and collaborative filtering are 
complementary.

• Hybrid systems combine collaborative and content-based methods
• Combining separate recommenders

• Adding content-based characteristics to collaborative models

• Adding collaborative characteristics to content-based models

• Developing a single unifying recommendation model

(Adomavicius and Tuzhilin, 2005)
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Hybrid Recommendation System

• Machine learning based recommendation

• Challenges:
• Huge (sparse) feature space

• Requires a lot of feature engineering

𝑟𝑢𝑖~𝛼 + 𝛽 ⋅ 𝑣𝑢 + 𝛾 ⋅ 𝑝𝑖 + 𝛿 ⋅ 𝑥𝑢,𝑖

User Features

Product Features

User-Product 

Interaction Features
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Hybrid Recommendation System

• Machine learning based recommendation

• Challenges:
• Huge (sparse) feature space

• Requires a lot of feature engineering

𝑟𝑢𝑖~𝛼 + 𝛽 ⋅ 𝑣𝑢 + 𝛾 ⋅ 𝑝𝑖 + 𝛿 ⋅ 𝑥𝑢,𝑖

User Features

Product Features

User-Product 

Interaction Features

Deep Learning
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Deep Learning Based Recommendation

• Recap: Matrix Factorization

≈

×

Users

Products

R
P Q

Latent representation 

of users

Latent representation 

of products

Embedding
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Embedding - Word2vec

• For each word 𝑖, learns the low 
dimensional embedding 𝑤𝑖 ∈ ℝ𝑘

(Mikolov et al., 2013) 

• “Shallow” neutral networks

(Mikolov et al., 2013)78



Embedding - User2vec

• Input: the sequence of all the events from the customer's activity.

• Targets: answers to a fixed list of questions asked at every event. 

(Zolna and Romanski, 2016)79



Embedding - Prod2vec & Meta-Prod2vec

• Prod2vec: uses Word2Vec on sequences of product receipts

• Meta-Prod2vec: adds product metadata as side information

(Vasile et al., 2016)80



Deep Learning Based Recommendation

User_ID 

Embedding 𝑝𝑢

Item_ID

Embedding 𝑞𝑖

Bias

𝑏𝑢

Bias

𝑏𝑖

User-Item Interactions

Extremely Sparse

𝑟𝑢𝑖 = 𝑞𝑖
𝑇 ∙ 𝑝𝑢 + 𝑏𝑢𝑖

𝑝𝑢(𝑡) 𝑏𝑢 𝑡 = 𝑏𝑢 + α𝑢 ∙ 𝑑𝑒𝑣𝑢(𝑡) 𝑏𝑖 𝑡 = 𝑏𝑖 + 𝑏𝑖,𝐵𝑖𝑛(𝑡)𝑞𝑖

𝑞1, 𝑞2, … , 𝑞𝑛
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DL-Based Recommendation + Context

Input Layer

Embedding 

Layer

Recurrent 

Layers

Fully-

Connected 

Layers

Output Layer

Cross-product Transform

Memorization+Generalization

Wide&Deep
[DLRS 16] 

Embedding Concatenation

YouTube
[RecSys 16] 

𝑦 = 𝑥0 ∗ 𝑥′ ∗ 𝑤 + 𝑏 + 𝑥

DCN Deep&Cross
[ADKDD 17] 
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DL-Based Recommendation + Time

Input Layer

Embedding 

Layer

Recurrent 

Layers

Fully-

Connected 

Layers

Output Layer

Cross-product Transform

Memorization+Generalization

Wide&Deep
[DLRS 16] 

Embedding Concatenation

YouTube
[RecSys 16] 

ℎ(𝜏) = 1 + 𝑤𝑡 + 𝑤𝑑 ∗ ℎ(𝜏)

Latent Cross
[WSDM 18] 

Updating Gating Mechanism:

ℎ𝑡 = 𝐿𝑆𝑇𝑀(ℎ𝑡−1, 𝑧𝑡)

RRN
[WSDM 17] 

Gating Mechanism: 

+time gates(Phased-LSTM)

Time-LSTM
[IJCAI 17] 

𝑦 = 𝑥0 ∗ 𝑥′ ∗ 𝑤 + 𝑏 + 𝑥

DCN Deep&Cross
[ADKDD 17] 

Multi-task Training LSTM

Ob Func: negative Poisson log-likelihood

NSR
[WSDM 17] 
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DL-Based Recommendation + Sequence

Input Layer

Embedding 

Layer

Recurrent 

Layers

Fully-

Connected 

Layers

Output Layer

Cross-product Transform

Memorization+Generalization

Wide&Deep
[DLRS 16] 

Embedding Concatenation

YouTube
[RecSys 16] 

ℎ(𝜏) = 1 + 𝑤𝑡 + 𝑤𝑑 ∗ ℎ(𝜏)

Latent Cross
[WSDM 18] 

Updating Gating Mechanism:

ℎ𝑡 = 𝐿𝑆𝑇𝑀(ℎ𝑡−1, 𝑧𝑡)

RRN
[WSDM 17] 

Gating Mechanism: 

+time gates(Phased-LSTM)

Time-LSTM
[IJCAI 17] 

Session Sequence Embedding

GRU4REC
[ICLR 16] 

𝑦 = 𝑥0 ∗ 𝑥′ ∗ 𝑤 + 𝑏 + 𝑥

DCN Deep&Cross
[ADKDD 17] 

Multi-task Training LSTM

Ob Func: negative Poisson log-likelihood

NSR
[WSDM 17] 
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CF-Based Recommendation vs. DL-Based 
Recommendation

 Collaborative Filtering

(CF, Schafer et al, AdaptiveWeb’07)

 Matrix Factorization

(MF, Koren et al, Computer’09)

 SVD++ model 

(Koren et al, KDD’08)

 Behavior Factorization 

(Zhao et al, WWW’17)

 TimeSVD++ model (Koren et al, KDD’09)

 Personalized Recommendation

(STAR, Song et al, CIKM’15)

 Factorizing Personalized Markov Chain 

(FPMC, Rendle et al, WWW’10)

Time-AwareContext-Aware Sequence-Aware

CF-Based Methods

DL-Based Methods

 YouTube DNN Model

(Covington et al, RecSys’16)

 Neural Collaborative Filtering 

(NCF, He et al, WWW’17)

 Session-based RNN

(GRU4REC, Hidasi , ICLR’16)

 Time-LSTM model (Zhu et al, IJCAI’17 )

 Neural Survival Recommendation

(NSR, Jing et al, WSDM’17)
 Deep & Cross model

(DCN, Wang et al, ADKDD’17)

 Latent Cross model 

(Beutel et al, WSDM’18)
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Case Study: JD.COM's DORS

• JD.COM’s Deep Online Ranking System (DORS)
• Front page product recommendation

• Endless item flow

• Presented in page-wise fashion

• Each page contains a fixed number of items
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Case Study: JD.COM's DORS

• Evaluation Metrics
• GMV

• Order numbers

• Overall and page-wise normalized discounted cumulative gains (nDCG)

𝐷𝐶𝐺𝑝,𝑝𝑎𝑔𝑒−𝑘 =  

𝑖=1,𝑘∈𝑝𝑎𝑔𝑒

𝑝
𝑔𝑚𝑣𝑘𝑖𝐼 𝑥𝑘𝑖

log2 𝑖 + 1

𝐼𝐷𝐶𝐺𝑝,𝑝𝑎𝑔𝑒−𝑘 = max
𝐻

𝐷𝐶𝐺𝑝,𝑝𝑎𝑔𝑒−𝑘

𝑁𝐷𝐶𝐺𝑝,𝑝𝑎𝑔𝑒−𝑘 =
𝐷𝐶𝐺𝑝,𝑝𝑎𝑔𝑒−𝑘

𝐼𝐷𝐶𝐺𝑝,𝑝𝑎𝑔𝑒−𝑘

Δ𝑁𝐷𝐶𝐺𝑝,𝑝𝑎𝑔𝑒−𝑘 =
𝑁𝐷𝐶𝐺𝑝,𝑝𝑎𝑔𝑒−𝑘

𝑡𝑒𝑠𝑡

𝑁𝐷𝐶𝐺𝑝,𝑝𝑎𝑔𝑒−𝑘
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 1.0 × 100.0%
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Case Study: JD.COM's DORS

• JD.COM's scalable deep online ranking system (DORS)
• Presents a relevant, responsive, and scalable recommendation system.

• Implemented in a three-level architecture.

• Able to precisely capture users' real-time purchasing intents.

(Yan et al, 2018)
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DORS - Learning-to-rank via DNN

• Data: full sets of both item and user offline features (Dimension: 5e10^8)

• Algorithm: pairwise architecture of learning-to-rank DNN

• Goal: scores all candidates for long-term user intents

89
(Yan et al, 2018)



DORS - Online Re-ranking via Multi-Arm Bandits (MAB)

• Organizes items by categories (arms).

• Warm starts the MAB by initializing the algorithm with DNN scores.

• Uses customers real-time clicks and impressions as positive and negative responses.

• Re-ranks recommendations in real-time using MAB with real-time customer feedbacks 
(i.e. impressions, clicks)

(oukas.info)
90

(Yan et al, 2018)



Summary: Connect to Customers

• Connect Products to Customers

• Recommendation Systems Introduction
• Content Based Method

• Collaborative Method

• Deep Learning Based Method

• Case Study: JD.COM’S Deep Online Ranking System (DORS)
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Summary: Recommendation Algorithms

Computational 

Efficiency

Model 

Performance

Cold start

Model Flexibility

Content Based Deep LearningCollaborative
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Serve Customers

Presenter: Zuo-Jun (Max) Shen
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Serve Customers

Unlimited choices available online Convenience

• Anywhere

• Anytime 

Fast delivery

A transformed shopping experience driven by cutting-edge technologies 

in big data and operations research



Serve Customers

Unlimited choices available online Convenience Fast delivery

• Limited capacity at local warehouses

• Delivery speed

• Inventory placement

• …

Challenges • Local demand

• Inventory 

replenishment

• …

Big data introduces new opportunities to better serve customers, as 

well as challenges to traditional solution methods

• Balance online and

offline demand

• Omni-channel fulfillment

• …



Serve Customers

Inventory Placement Inventory Replenishment Order Fulfillment



Inventory Placement

JD’s nationwide convenience stores

Expanding nationally, especially in
rural areas

Expected to reach 1M stores by
2023

Cater to local needs and support
fulfilling online demand
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Inventory Placement

Problem:
• How should inventory be allocated to

JD’s stores nationwide?

Goal:
• Delivery products to meet local needs

• Satisfactory fulfillment rate

Constraint:
• Limited store capacity

• …
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Inventory Placement – Offline Demand

Only sellable if in-stockJD’s nationwide stores Limited capacity per store

SKUs

How to optimize profit and satisfy customer needs?
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Inventory Placement – Online Demand

Limited assortment of SKUs at local stores …

What SKUs to allocate to local stores to maximize order fulfillment?

… while selection is unlimited

online.
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Inventory Placement

Fast 

delivery

Slower 

delivery

Shipping in advance

What SKUs to allocate to local

stores?
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An Assortment Problem

Total SKUs

Local fulfillment enables expediated delivery that delights customers

Demand fulfilled by local store
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An Assortment Problem

Total SKUs

Demand fulfilled from warehouse

Longer delivery time and higher cost if fulfilled by remote warehouses
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Classify each SKU as in the assortment or out
⟹Train a supervised learning algorithm

Assortment as a Classification Problem

To train a classifier we first need to label the training set

min #𝐿𝑜𝑐𝑎𝑙𝑙𝑦𝑀𝑖𝑠𝑠𝑒𝑑𝐹𝑢𝑡𝑢𝑟𝑒𝑂𝑟𝑑𝑒𝑟𝑠 𝑠. 𝑡. #𝑆𝐾𝑈𝐼𝑛𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ≤ 𝑘

Past information

Serve future orders

Artificial Neural Network

min #𝐿𝑜𝑐𝑎𝑙𝑦𝑀𝑖𝑠𝑠𝑒𝑑𝐹𝑢𝑡𝑢𝑟𝑒𝑂𝑟𝑑𝑒𝑟𝑠

Non continuous loss ⇒ No gradient

Issues with enforcing constraint 

Classifiers

Needs training set to be labelled
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Labeling Training Set

Labeling the data is already a hard problem

min #𝐿𝑜𝑐𝑎𝑙𝑙𝑦𝑀𝑖𝑠𝑠𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑠 𝑠. 𝑡. #𝑆𝐾𝑈𝐼𝑛𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ≤ 𝑘

Order data

Minimize number of 

locally missed orders

Solve a deterministic discrete optimization problem

⟹Reduces from k-densest graph problem

The Deterministic problem is NP-hard
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Bipartite Graph Representation of Orders

Order Set

5

5

2

10

SKU Set

s

a

c

b

d

(a)

(a, c)

(a, b, c)

(b, d)

t

SKUs Unique order types

(a,b,c,d)

(a,b,c)

(a,c)

(b,d)

(a)

min #𝐿𝑜𝑐𝑎𝑙𝑙𝑦𝑀𝑖𝑠𝑠𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑠 + 𝜆 ∗ #𝑆𝐾𝑈𝐼𝑛𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒
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Example

• Selecting if 𝜆 > 10

• If 𝜆 ≤ 10 then selecting 
(a, b, c) becomes 
optimal

s

a

c

b

d

(a)

(a, c)

(a, b, c)

(b, d)

t

SKUs Unique order types

TotalCost = min #𝐿𝑜𝑐𝑎𝑙𝑙𝑦𝑀𝑖𝑠𝑠𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑠 + 𝜆 ∗ #𝑆𝐾𝑈𝐼𝑛𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

TotalCost = 𝜆 + 5 + 5 + 2

Bipartite Graph Representation of Orders
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Parametric Cut Algorithm

• Using a graph method called Parametric Cut, we can efficiently identify every unique 
assortment that are optimal for a range of costs. The outputs are all NESTED 
assortments.

• We are not guaranteed to find an assortment of exactly the size we were looking for, 
however each assortment found is optimal for their cardinality.

s

a

c

b

d

(a)

(a, c)

(a, b, c)

(b, d)

t
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Incorporate Future Demand

Order and SKU
data

Optimization Classification
model

Forecast & 
Optimization

Predict future
assortment
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• Inventory placement

• Product assortment

Problem

• Online & offline sales

• Demand forecast

Data
• What SKUs to be

carried by each store

Solution

Inventory Placement
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Serve Customers

Inventory Placement Inventory Replenishment Order Fulfillment



Inventory Replenishment

Smart vending machine
• Flexible shelf-space sharing

• Mobile log-in and payment

• Frequent replenishment

• Demand-driven selection

Challenge
• Demand uncertainty

• Censored sales
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A Replenishment Problem

Beginning of the day End of the day

D = 1

D = 2

D ≥ 3
MLE

Knapsack

Observation Replenishment

decision
Demand

distribution

This differs from the multi-armed bandit problem as the reward 

yielded by 2 units of the same product is not independent 114



Demand Estimation with MLE

ℒ(𝜃; 𝑜𝑏𝑠) = 𝑃(𝐷𝑏𝑙𝑢𝑒 = 1; 𝜃) ∙ 𝑃(𝐷𝑔𝑟𝑒𝑦 = 2; 𝜃) ∙ 𝑃(𝐷𝑟𝑒𝑑 ≥ 3; 𝜃)

ℒ(𝜃; 𝑜𝑏𝑠) =  

𝑥𝑖 𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

𝑃 𝐷𝑖 = 𝑥𝑖; 𝜃 ∙  

𝑥𝑗 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

𝑃 𝐷𝑗 ≥ 𝑥𝑗; 𝜃

 𝜃 ∈ {arg max ℒ(𝜃; 𝑜𝑏𝑠) } 𝑀 𝑖, 𝑗 = 𝑃(𝐷𝑖 ≥ 𝑗;  𝜃)

Observation
• Demand is independently distributed

• 𝜃 is the set of parameters of the distribution

• ℒ(𝜃; 𝑜𝑏𝑠) is the likelihood function of 𝜃
given the observation 𝑜𝑏𝑠

• 𝑀[𝑖, 𝑗] is the matrix that maps 𝑖 and 𝑗 to the 

probability that product 𝑖 is bought more 

than 𝑗 times during the next cycle

Assumptions
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Use Knapsack to Solve for Inventory Level

𝑋𝑖
𝑗
= 1 𝑖𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑗 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑎𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑣𝑖 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖
𝑟𝑖 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑦𝑖𝑒𝑙𝑑𝑒𝑑 𝑏𝑦 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑠𝑜𝑙𝑑

𝐶 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝑀𝑎𝑥  

𝑖

 

𝑗

𝑟𝑖 𝑀 𝑖, 𝑗 𝑋𝑖
𝑗

𝑠. 𝑡.  

𝑖

 

𝑗

𝑣𝑖 𝑋𝑖
𝑗

≤ 𝐶

Next day inventory level

Decision Variables Parameters

𝐶 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

Maximize expected revenue under capacity constraint
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• Inventory
replenishment

Problem

• Censored sales

• Demand distribution

• Sales imputation

Data
• When and how

many SKUs to be
restocked

Solution

Inventory Replenishment
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Serve Customers

Inventory Placement Inventory Replenishment Order Fulfillment



Order Fulfillment

Pros:

• Easy to manage

Cons:

• Inflexibility

• Limited products per FC/store

Need a more flexible fulfillment system
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Order Fulfillment – Omni-Channel

Objective:

• Max delivery utilization

• Min cost of delivery

Constraint:

• Delivery deadline

• Inventory availability

• Delivery capacity

• …

Orders can be fulfilled more efficiently across FDC/stores 
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A Fulfillment Problem (1/2)

Distance = 3 Distance = 2

Inventory = 5 Inventory = 2

• Higher delivery cost

• Lower stock-out probability

• Lower delivery cost

• Higher stock-out probability

How to best fulfill demand while balancing cost of delivery and loss of sales?
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A Fulfillment Problem (2/2)

Distance = 3 Distance = 2

How to design an optimal inventory holding policy?

Online order

Offline demand = 4Offline demand = 2

• Higher delivery cost

• Lower demand offline

• Lower delivery cost

• Higher demand offline
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• Fulfill online and
offline demand

Problem

• Online and offline sales

• Real-time inventory data

Data
• Which store to fulfill

an online order

Solution

Order Fulfillment
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Traditional Retailing

Facility

(Warehouse,

store)

Products

Customers
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Data-Driven Retail-as-a-Service

Dedicated →

shared

Products +

Content+

Data+

Services

Customers

→ sellers, 

manufacturers

Smart

Merchant

Smart

Brand

Smart

Tracker
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Smart Merchant - Zhu-Ge

Empower 3rd Party

Support POP merchants with 

extensive pricing and market 

analysis

Price Master 

Monitor market trend, 

public opinions on social 

media to improve PR

Marketing Advisor

Zhu-Ge

Optimize inventory 

decision based on big 

data and Operations 

Research

Smart Inventory

Explore market 

opportunities and industrial 

trends to boost sales 

volume

Assortment Guru



Smart Brands - Retail Intelligence Lab

Business Management 

Platform

AI Open Platform 

Based on Business 

Scenarios

TOP Partners
Sales 

Diagnose
Assortment

Pricing
Inventory 

Management

Collaborative 

Forecasting

Analysis Prediction Decision

Improve supply chain efficiency based on AI and field experience; 

Uncover user insights to improve product designs and assortment



Smart Tracker Based on Block-Chain

Plant
Logistic

s

Code

Retail

Warehouse

Materials

Buyer

56 Top Brands

1 million+ QR Code Scans

To establish a new traceable E-commerce business based on Block-Chain



Smart Tracker Based on Block-Chain

Product Info

Trace Info

Declaration 

Info

Inspection

Info

Manufacture 

Info

Block-chain technology enables customers to trace all phases from manufacturing to delivery of a product 



Case Study: 7 Fresh Integrated Service
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7Fresh

DeliveryGrocery Dining Integrated Data
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7Fresh-Grocery

Dynamic Pricing based on
• Product life cycle
• Inventory level
• Customer demand

Product Tracing
• Block chain 
• Recognition technology
• Additional information

• origin, 

• freshness 

• cooking tips

• …



7Fresh-Delivery

Omni-channel

Fulfillment

30-Minute

Ultra Fast Delivery

Online Offline Data

Integrated



7Fresh-Value-Added Service

+ =

Fresh Ingredients Cooking

Service



7Fresh

DeliveryGrocery Dining Integrated Data

Facial recognition Shopping path tracking Online offline data

integration

Gravity sensing

shelf
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Online

offline

data

7Fresh-Integrated Data

Gravity
sensing

shelf

Shopping
path

tracking

Facial
recognition

Enriched Data Set

Customer profile …Customer behavior Real-time inventory



Service 
assurance

Basic 
information

Arrival 
notification

Face Recognition matches online user accounts with offline shoppers

7Fresh-Integrated Data

Membership

management

Facial

recognition

Loyalty

management
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Heatmap

Popular shelf

Hot movement 
path

Regional 
population

Consumer 
movement

Heat map of JD offline store, Wanda Plaza, Tongzhou, Beijing

Shopping Path Tracking System tracks and records consumer movement within store; 

enables spatial-temporal data analysis

7Fresh-Integrated Data
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7Fresh-Integrated Data

Personalized Coupon

Inventory Planning

Marketing

Customer Segmentation

Assortment

Promotion Optimization

• 50% of offline customers

are active online on JD.com

Online-Offline Data Integration: leveraging offline in-store data to inform online marketing efforts and

personalize promotions

Personal

coupons
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7Fresh-Integrated Data

Online-Offline Data Integration: channels online customer shopping data to enhance offline shopping

experience

Smart Shopping

Cart

• Extensive online data enables data-driven

localized assortment 

and highly personalized marketing 

from Day 1 of store opening 

Coupon usable

also offline
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7Fresh-Integrated Data

Real-time inventory

Number of times a 
product got lifted

Shelf placement

Gravity Sensing Shelf : generates real-time inventory information to improve customer satisfactory and

operational efficiency
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3

4

7Fresh

• Ultimate grocery store that breaks the 

boundary of online and offline shopping

• Offline store supported by latest retailing 

technologies

• Instore dining

• 30min delivery service to nearby areas
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7Fresh Summary

Data Science

Understand Customers Connect to Customers Serve Customers

• Data driven supply chain

(customer profile,

customer behavior, real-

time data)

• Smart multi-connection

to customers
• Flexible replenishment

and fulfillment system

Value-added ServiceQuality Grocery Ultra Fast Delivery
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Q&A

谢谢！
Q&A

Smart

Decision

Smart

Retail

Smart

Operation

Smart Supply Chain

Control Tower
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